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The aim of the present study was to submit Huxley's allometric equation ( Y = aM*5) to a 
dimensional analysis; in this equation Y is any biological variable, a is the mass-coefficient, 
M represents body mass, and b the mass-exponent. The dimensions of each of its com­
ponents is thoroughly analyzed by means of the MLT-system of physics, as is the dimen­
sionality of the whole equation. The relationship between the dimensional analysis and the 
postulates of some theories of biological similarity is discussed. In conclusion, parameter a 
of the allometric equation is always dimensionless, while the physical dimensions of the 
dependent variable Y can be defined by means of the power function Mb. 

Comparative physiometry and morpho­
metry deal with empirical values obtained 
from living beings of different sizes. These 
numerical values are then submitted to the 
pertinent statistical procedure provided 
that the correlation between the dependent 
and independent variable is linear. However, 
if the original data are not linearly correlat­
ed, it is possible to apply a log-log transfor­
mation in order to obtain the required linear 
relationship. With the latter procedure the 
experimental data can be conveniently 
expressed by means of Huxley's (1932) 
allometric equation ( Y = aM*>), where Y is 
the dependent variable; M is the indepen­
dent variable, generally the body mass; and 
a and b are two parameters. The apparent 
simplicity of the allometric equation may 
explain the preference of biologists for this 
type of mathematical treatment. 

Due to the fact that the allometric power 
formula is an equation, its dimensional 
homogeneity is mandatory when the phys­
ical characteristics of livings beings are 
studied (lenghts, area, volumes, pressures, 
compliances, concentrations, flows, re­
sistances, elasticities, among others). 

The present study deals with the dimen­
sional analysis of the allometric equation 
and its possible interpretations. Never­

theless, the whole dimensional problem can 
be neglected when one considers: 
a) that the allometric equation has an em­

pirical and statistical origin. In this case, 
the equation does not necessarily have 
to obey the required dimensional homo­
geneity which is obligatory in the physi­
cal sciences, and 

b) because logarithms are always pure 
numbers, the logarithmic transforma­
tion of the empirical data, which are 
then expressed in allometric form, annihi­
late the physical nature of these data; 
and 

c) that the physical dimensions can be eli­
minated from the allometric equation 
through the use of "dimensionless ratios" 
of the primary physical units, i.e., the 
length ratio between prototype (p) and 
model (m)* , which yield L p / L m = X, or 
the ratio of time functions ( T p / T m = r), 
and finally of two masses ( M p / M m = /x)-
In these three instances we are dealing 
with dimensionless numbers ( M ° L ° T 0 ) 
because then corresponding physical di­
mensions are absent. 

* Prototype (p) means a large or a smaU scale organism 
to which a model organism (m) is geometrically, 
chemicaUy, or physicaUy related. 
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The other alternative is to try to investi­
gate the conditions under which the physi­
cal dimensions of the allometric equation 
are of importance. 

First, dimensional analysis is basic when 
different theories of biological similarity 
are postulated (reviewed by Günther, 
1975a, b), since in these cases it must be 
assumed a priori: 

a) that body density is constant; and 
b) that several exogenous or endogeneous 

characteristics are invariant, as for in­
stance: i ) the acceleration of gravity 
(mechanical similarity); ii) the velocity 
of certain functions (biological similar­
i ty) ; and iii) the transfer of matter or 
energy (transport similarity). 
Second, in order to ascertain whether or 

not the allometric equation is physically 
homogeneous, dimensional analysis can be 
applied to the allometric equation as a 
whole ( Y = a M b ) , or to its different com­
ponents (Y, a, Mb). 

Third, the allometric equation only deals 
with two variables at a time, despite the 
fact that all biological processes are more 
likely to be of multivariate nature, and non-
physical factors may influence the physical 
variables which are investigated. 

Due to the general applicability of the 
allometric equation in the biological sci­
ences, it seemed worth studying the physico-
mathematical aspects of this equation, 
particularly its relationship with various 
theories of biological similarity, which are 
commonly based on the dimensional analy­
sis of the different biological variables. 

The aim of the present study is to sub­
mit the allometric equation as well as its 
components to the dimensional analysis, 
i.e., the dependent variable Y, the pro­
portionality coefficient a (the intercept at 
unity mass), body mass (M), and finally, 
exponent b (the slope of the regression 
line). 

A ) The allometric equation 

The relationship between any physical 
variable (Y) and body mass ( A f ) can be 
described conveniently by means of the 
allometric equation which was largely de­
veloped by J.S. Huxley (1932). Since both 

variables (Y and M) increase at different 
rates, this power equation is often defined 
as "allometric". When the relative sizes of 
Y and M are compared, the allometric 
equation assumes the general form 

Y = aM»> ( i ) 

where Y is any physiological, morphological, 
or ecological variable that can be correlated 
in most cases with body mass ( M ) . It should 
be noted that in Eq. 1 both a and b are 
parameters whose physical meanings will be 
discussed later. Moreover, the numerical 
value of exponent b determines the type of 
scaling phenomenon, since when b = 0 the 
dependent variable (Y) is constant, whereas 
when b = 1.0 the relationship is linear. On 
the other hand, when b < 1.0 the corres­
ponding curve is a hyperbola, and if b > 1.0 
the result is a parabola. Contrariwise, when 
the allometric exponent b has a negative 
sign, then an inverse relationship exists 
between the independent variable {M) and 
the dependent variable ( Y ) . Thus, the ex­
ponent b is known as the "scaling factor", 
because it describes the effects (Y) which 
are correlated with the changes in body size 
(M). 

Since non-linear relationships are dif­
ficult to manipulate, they are ussualy trans­
formed into logarithmic expressions. When 
this is done with Eq. 1, a straight line equa­
tion is obtained: 

log Y = log a + b log M (2) 

where 

Y ' = intercept + slope M' (3) 

since Y ' = log Y and M' = log M. 

Thus, Eq. 2 is a simple mathematical 
expression which is convenient for the 
statistical treatment of the experimental 
data, provided that these are represented in 
a double logarithmic form (log Y versus 
log M). 

Despite the fact that the allometric equa­
tion has been known for more than 150 
years (Kleiber, 1932), it was particularly 
the work of Huxley (1932) who introduced 
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this simple and powerful tool to the quan­
titative description of the multiple scaling 
phenomena which can be observed among 
living beings. The general acceptance of the 
allometric equation in the biological sci­
ences is illustrated by the recent publication 
of four extensive monographs on the sub­
ject, where this equation was universally 
employed (Calder, 1984; McMahon & 
Bonner, 1983; Peters, 1983; and Schmidt-
Nielsen, 1984). 

Nevertheless, there are numerous contro­
versial aspects concerning the allometric 
equation that are still unresolved, as for 
instance: 

a) that dimensional analysis of physics can­
not be applied to the results of many 
biological measurements that are express­
ed in allometric form (Schmidt-Nielsen, 
1984, p. 18); 

b)that exponent (b) can be "predicted" on 
the basis of dimensional analysis and 
several theories of biological similarity 
(Lambert & Teisser, 1927; Günther, 
1975a, b; Heusner, 1982, 1983, 1984, 
1988); a statement which is not accepted 
by Butler et al, 1987, 1988; 

c) that the units of the body mass measure­
ment (mg, g, kg, t) are of importance 
(Donhoffer, 1986), or that these units 
are irrelevant (Calder, 1987, Günther & 
Morgado, 1987); 

d) that the physical dimensions of the allo­
metric equation are of real importance, 
particularly the mass-coefficient a (Heus­
ner, 1984, 1985, 1987). 
Lambert & Teissier (1927) introduced di­

mensional analysis and a. new theory of bio­
logical similarity into biology, based par­
ticularly on the mass ( M ) , length ( L ) , and 
time ( T ) system of newtonian physics. 
However, recently a vivid controversy has 
arisen (for detail see Heusner, 1982-88; 
Feldman & McMahon, 1983; Butler et. al, 
1987-88) concerning the applicability of 
both dimensional analysis and theories of 
biological similarity to scaling problems in 
the biological sciences. 

B) The dimensionless body-mass ratio 

For most investigators, the allometric equa­
tion only describes the experimental data 

at hand in a quantitative manner, and the 
power equation does not represent a bio­
logical law. Nevertheless, in some instances 
the allometric equations may "reveal prin­
ciples and connections that otherwise re­
main obscure" (Schmidt-Nielsen, 1984, p. 
32). On the other hand, these equations do 
not require the dimensional consistency 
which is obligatory in the physical sciences 
due to their statistical origin (regression line 
of the log-log plot). In consequence, a 
rigorous dimensional analysis should not be 
mandatory (Riggs, 1963; Calder, 1984). 

Moreover, the logarithmic form of Eq. 2 
is dimensionless per se, otherwise we would 
have to consider the following alternatives: 

a) the "secondary" units (Schepartz, 1980, 
p. 4) should be the result of an addition 
and not of a product, as it is customary 
in the physical sciences; 

b) the summation of log a and b log W is 
only possible if both are dimensionless 
numbers; 

c) since log a is equivalent to log Y when 
the body mass (M) is equal to unity, para­
meter a should have the same units as 
the dependent variable Y; in consequence, 
the term Mb must be dimensionless, in 
which case we could not add log a with 
log Mb. 

In previous publications (Günther, 1975 a, 
b; Günther and Morgado, 1982, 1987) we 
have avoided the dimensional problem by 
establishing dimensionless ratios between 
the primary units of the prototype (p) and 
the model (m) , in such a way that M p / M m = 
M, L p / L m = X, and finally T p / T m = r. As a 
result, the subsequent analysis was perform­
ed entirely with "dimensionless numbers". 

C) The dimensions of the body 
mass-coefficient (a) 

One of the best known allometric equations 
is related with areas ( A ) and volumes ( V ) of 
geometric bodies (Günther, 1975a, b) , which 
can be defined by means of Meeh's (1879) 
equation. In the particular case of a sphe­
rical body the relationship between its area 
( A ) and the corresponding mass ( M ) obeys 
the following formula: 

A = 4.84 M 2 /3 (4 ) 
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On the other hand, Heusner (1984) has 
postulated that when the mass-exponent 
(b) differs from unity (b 1), the allometric 
power formula ( M b ) is physically meaning­
less, and should be considered as an "in­
tensive" property. In that case, the dimen­
sions of area ( A ) in Eq. 10 are defined by 
the power formula of body density ( p - 2 / 3 ) . 
But, it should be recalled that our findings 
do not agree with Heusner's conclusion 
(1984) due to the fact that density (p) is an 
"intensive" variable. 

D) Is the body mass exponent (b) 
adimensional? 

The mass-exponent b (slope of the double 
logarithmic plot) of any power formula 
( M b ) is a dimensionless number, because b 
is equivalent to a logarithm, and, as result, 
all the terms of the allometric equation 
should be dimensionless. Yet, it is worth 
mentioning that the allometric equation 
can be deduced from some basic assump­
tions, namely that: 

a) the growth of a system (von Bertalanffy, 
1968) is directly proportional to the 
number of elements ( Q ) present in the 
system defined by number one: 

d Q , / d t = a 1 Q 1 (11) 

For a second system, we have 

d Q 2 / d t = a 2 Q 2 (12) 

If we further assume that both systems 
are in "competition", an allometric 
equation of the form 

Q, = a 3 Q 2

b (13) 

can be obtained after integration of equa­
tions (11) and (12). 

b)the allometric equation can also be ob­
tained (Schepartz, 1980) from the growth 
processes of two entities of the same 
physical dimension which follow first 
order kinetics. If X and Y are two var­
iables that can be expressed by the same 
units, the growth processes are functions 
of time ( t ) , which can be defined as fol­
lows: 

dY/dt = kj Y and dX/dt = k 2 X (14 

where A is the surface area of the sphere, in 
dm 3 , and M, is its mass, in kg. 

Th^ original deduction of Eq. 4 was based 
on the relationship between the radius ( r ) 
and the mass (M) of a sphere, whose density 
(p ) was assumed to be 1 kg/dm 3 , hence 

V = ( 4 / 3 ) 7 r r 3 (5 ) 

and 

A = 4 j r r 2 ( 6 ) 

From Eq. 5 we obtain 

r = ( 3 V / 4 7 T ) 1 / 3 (7 ) 

and by introducing the radius (r) into Eq. 
6, we have 

A - 3 2 / 3 (4TT) 1 / 3V2 /3 (8) 

Finally, when all numerical terms are 
condensed into one parameter (a), we obtain 

A = 4.84 V 2 / 3 (9 ) 

where parameter a is a dimensionless con­
stant, which is numerically different for 
each geometric body; only in the case of 
the sphere does it attain a value of 4.84. 

It is worth mentioning that Eq. 4 is basic 
for establishing a "geometric" similarity, 
which assumes that the body density (p) of 
prototype (p) and a model (m) are the same. 
In consequence, body density represents a 
constant ( p p / p m = 1.0), in such a way that 
the characteristic radius ( r ) is equivalent to 
the cubic root of the volume ( V ) of the 
sphere. In the present example we have 
seen that one fundamental unit (lenght) is 
expressed as a power function of another 
fundamental unit (volume). However, a 
more rigorous treatment of Eq. 4 would 
yield. 

A = 4.84 ( p ) M 2 / 3 (10) 

where M is body mass and p its density 
(p = M / V ) which assumed to be constant, 
thus it is part of parameter a. As a result, 
the dimensions of A in Eq. 8 depend on the 
dimensions of V 2 / 3 , because V 2 / 3 = ( r 3 )2P = 
r 2 . 
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If both processes occur at the same time 
we have: 

d Y / Y = (kt /k 2 )dx/X (15) 

which, after integration, yields: 

Y=aX*> (16) 

Moreover, in Eq. 16, parameter a defines 
the initial conditions (intercept), while ex­
ponent b is equivalent (see Eq. 15) to the 
ratio k j /k 2 . Since both constants (k t and 
k 2 ) have the physical dimensions of the 
physical dimensions of the reciprocal of 
time ( T - 1 ) » i-e., of a frequency, consequent­
ly the ratio of both constants (k! and k 2 ) is 
a dimensionless number. Due to the fact 
that we have initially assumed that the 
units of X and Y are identical, the homo­
geneity of the allometric equation can be 
achieved only if parameter a is raised to the 
power function (1-b) of either variable X 
or of variable Y. Therefore, the physical 
units of the dependent variable Y are 
equivalent to the units of the corresponding 
power formula (aX*>) of the independent 
variable X. If both growth processes have 
the same constant (k1), the power formula 
(Xb) will have the same units as Y. On the 
other hand, if k 2 is much greater than k!, 
the dimensions will depend on parameter 
a. These particular relationships were 
thoroughly discussed by Heusner (1982-88). 

In sum, the adimensionality of the mass-
exponent (b) can be deduced from basic 
growth processes, as well as from the loga­
rithmic nature of this exponent. 

E) The physical dimension of the 
dependent variable (Y) is correlated 
with the power formula (Wb). 

The applicability of allometric equations is 
not restricted to the condition that variables 
Y and X should have the same physical 
dimensions (length, time, mass, among 
others). One of the most quoted allometric 
equations, which deals with Kleiber's (1975) 
relationship between the basal metabolic 
rate (m) and body weight (W), in kg, is: 

m = 70W3/* (17) 

In this equation, the physical units of 
the two terms of the equation are different. 

We have previously mentioned that the 
allometric equation can be deduced an­
alytically from some basic growth processes 
(see Eqs. 11 and 14). Therefore, we can re­
formulate Eq. 15 in the following manner: 

( d Y / Y ) / ( d X / X ) = k 1 / k 2 = b (18) 

Eq. 18 illustrates the fact that, even if the 
growth processes of X and Y are different, 
and are expressed by means of different 
physical units (White and Gould, 1965), 
the mass-exponent (b ) is still a dimension­
less number. 

Another characteristic of the allometric 
equation is that the exponent (b) may have 
the same value irrespective of the physical 
variables involved; as for instante, b = 0 
may represent g/l, moles/1, or calories/g, 
whereas b = 1 can represent mass, energy, 
volume, work, etc. Even when exponent b 
is of fractional nature, the allometric equa­
tion can sometimes represent a primary 
physical variable, as for instance, a length 
L = V 1 / 3 , where V is a volume. 

It is worth mentioning that Lambert & 
Teissier (1927) formulated the first theory 
of "biological similarity" based on the prin­
ciples of a "geometric similarity" by assum­
ing the validity of two postulates, i.e.: 

l)that the body composition of different 
mammals is similar, and in consequence 
their densities should be identical, or 
that p = M / V = constant. This postulate 
is also based on the fact that all mammals 
are on the verge of floatation when placed 
in water; 

2) that biological periods ( T ) vary in pro­
portion to the corresponding length ( L ) , 
i.e., that velocities ( v ) are the same in 
prototype (p) and model (m), or that 
v = L /T = constant. 

From these postulates we can deduce: 
l )That the density equivalence (p = M/V = 

constant) can be rewritten —in accord­
ance with a geometric similarity— as: 

P = M / L 3 o r L = M 1 / 3 p ~ 1 / 3 ( 1 9 ) 

and 
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2) That the velocity equivalence (v = L /T = 
constant) can be expressed as: 

T - v - ' L (20) 

If time ( T ) is now correlated with body 
mass (M) , we obtain: 

T ^ - ' M 1 ^ - ' / 3 (21) 

As a result, basal metabolic rate (m), 
whose physical dimension is equivalent 
to "power", will yield 

[m]= [ M L 2 T 3 ] or [m]= [ p ^ ^ M 2 / 3 ] (22) 

Since p and v are the two postulated bio­
logical constants, it stands that basal 
metabolic rate (m) must vary in propor­
tion to M 2 / 3 . 

However, Heusner (1984-1988) has pos­
tulated that the physical units of variable Y 
depend on those of parameter a. In accord­
ance with his assumption one obtains the 
following expression for the metabolic rate 
(m) : 

[m]= [ M L 2 T 3 ] = [ M l b L 2 T - 3 ] [ M 2 ^ ] (23) 

Since in this particular case the allometric 
mass-exponent is equal to 2/3, we can in­
troduce this value into Eq. 23 and obtain: 

[ M L 2 T " 3 ] = [ M ^ M ^ M - ' l f M 2 / 3 ] (24) 

The result is that parameter a is dimen­
sionless ( M ° ) , a conclusion which is in con­
tradiction with Heusner's original assump­
tion, namely, that the physical dimensions 
of Y are given by the dimensions of para­
meter a. 

Besides metabolic rate (m), many other 
functions can be submitted to a dimen­
sional analysis and incorporated into some 
theory of biological similarity. For this 
purpose, Newton's reduction coefficient 
( x ) can be expressed in accordance with the 
MLT-system of physics: 

X = MaL? V (25) 

Nevertheless, the question of which are 
the convenient primary units which should 
be used when dimensional analysis is applied 

to the biological sciences is the first to arise. 
Piatt & Silvert (1981, p. 857) have suggest­
ed that the following general equation can 
be utilized when three independent entities 
(A , B, C) are present: 

Q= f ( A a B b C c ) (26) 

As mentioned above, in the physical sci­
ences the equivalences could be A = mass, 
B = length, and C = time, or any other 
relevant units. Therefore, Eq, 25 can be 
written as 

Q = f ( M a L0TT) ( 2 ? ) 

and the postulated two basic assumptions 
of the theory of biological similarity could 
be expressed as follows 

M = L m (28) 

and 

M = T n (29) 

Consequently, from these two assumptions, 
and through the use of Newton's reduction 
coefficient (x ) , we obtain 

X = M a L 0 T 7 or M " M0/m M > (30) 

and finally 

x „ Ma+j3/m+ 7/n (31) 

In consequence, the theoretically deduc­
ed exponents (Eq. 31) can be now compared 
with the empirical findings (exponents b) 
because, and in accordance to Yates (1979, 
p. R l ) , we shall have 

b= Pi a + qi/3 + r,7 (32) 

where the coefficients ft, q,, and rx represent 
the corresponding numerical factors for 
each of the three similarity principles (me­
chanical, biological, and transport), and 
where a, 0, y are the corresponding physical 
dimensions (Günther 1975a, b). As a result, 
any empirical allometric exponent (b) will 
be equivalent to the theoretical reduced 
exponent for a given function 

b - a + 0/m + 7 / n (33) 
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With regards to the metabolic rate (m), 
which we have briefly discussed above, it 
should be noted that the small difference 
between allometric exponents for basal 
metabolism b = 2/3 (Eq. 22) and b = 3/4 
(Eq. 17) has been the cause of a recent 
controversy (Heusner, 1987, 1988;Feldman 
& McMahon, 1983; Butler et al, 1987, 
1988). 

F ) Dimensionless numbers from ratios of 
allometric equations 

In order to obtain size-invariant dimension­
less groups, as first suggested by W. R. Sthal 
(1962), it is possible to avoid the physical 
dimensions involved in biological morpho­
metry through the establishment of ratios 
between two allometric equations pertaining 

to the same biological variable. The resulting 
formula, whose exponent is zero or almost 
zero, was designed by Stahl as the "residual 
mass exponent" (RME), and in it, the 
corresponding mass coefficient (a) is a 
numerical index of the relationship between 
the two allometric equations under consi­
deration. 

The dimensionless groups presented in 
Table 1 were obtained from empirical allo­
metric equations of equivalent functions 
in mammals, birds and reptiles. From these 
ratios one obtains the corresponding "di­
mensionless numbers" in which the RME 
is very close to zero in each case. These 
dimensionless numbers are of particular 
interest when intraspecific or interspecific 
comparison are of biological relevance, 
since the structural or functional charac-

TABLE l 

Dimensionless numbers from allometric ratios of different functions, 
mainly pertaining to animals of different species. 

Ratios and allometric equations' References 

HEART RATE (min- 1 ) in resting conditions: 

Mammals = 241 M ~ 0 - 2 S

 = 1 - 5 4 M o . 0 2 
Birds 156M-0-23 

Mammals _241 M - ° ' 2 5 _ j 27 M-0.02 

Marsupials 106 M * " 

Calder (1984) 
p. 108 

B) RESPIRATORY CYCLE (sec): 

Mammals 1.12 M ° - 2 6 

Birds 2.63 M°-28 
= 0.43 M-002 

Calder (1984) 
p. 142 - 143 

HEART RATE AND RESPIRATORY RATE (s~l) in mammals: 

Heart rate 3.61 M-0-27 

Respiratory rate 0.885 M - 0 0 2 8 

= 4.08 M ° 0 1 

Peters (1983) 
p.255 &257 

D) METABOLIC RATE (Kcql • day- 1 Schmidt-Nielsen (1984) 
p. 69 & 88 

Passerines (activity) _ 140.9 M ° - 7 0 4 _ 1 2 3 M " 0 0 2 2 

Passerines (rest) 114.8 M°-726 

Nonpasserines _ 3.31 M 0 - 7 2 3 _ Q gg M-0.001 
Passerines 4.98 M 0 - 7 2 4 
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Ratios and allometric equations' References 

Resting energy in mammals (watt) and M (kg) 

Eutherian 3.35 M 0 - 7 5 

. = 1.13M0013 
Marsupial 2.97 M 0 - 7 3 7 

Eutherian 3.35 M ° - 7 S 

= 1.12M°-°0 
Monotreme 2.99 M 0 - 7 5 

Oxygen consumption (ml 02/min) in Eutherians: 

Exercise 116.4 M°-79 

Rest 11.6 M»- 7 6 
10 M°-°3 Calder (1984) 

p. 114 

MAXIMUM LIFESPAN (days) 

Mammals 4240 M 0 - 2 0 

Wild Birds 6400 M°-20 
= 0.66 M ° 0 0 

Peters (1983) 
p. 283 

KIDNEY: Inulin clearance (ml s" 1) 

Mammals 0.089 M 0 - 7 2 

Birds 0.035 M 0 - 7 8 

Mammals _ 0.089 M 0 - 7 2 

Reptiles 0.0083 M » - 7 5 

2.54 M - ° 0 6 

10.72 M - ° 0 3 

Peters (1983) 
p. 261 

SKELETON MASS (kg) and M (in kg): 

Mammals 0.061 M 1-06 

Birds 0.065 M 1 0 7 1 
0.94 M - 0 - 0 1 1 

Peters (1983) 
p. 264 

teristics can now be defined quantitatively 
by a single number, which is dimensionless 
from a physical point of view, and which 
is able to define the ratio between both 
variables, irrespective of body size (M° = 
1.0). 

In order to illustrate the general relevance 
of these comparisons, let us examine for 
instance the ratio between heart rates and 
respiratory rates in mammals at rest (Table 
1, item C), which yielded a figure of 4.0, 
i.e., four cardiac cycles per one respiratory 
cycle, irrespective of body size. Another 
example is the ratio of oxygen consumption 
(ml 0 2 • min- 1 ) in wild mammals (Table 1, 
item D) between maximal exercice and at 
rest, and which turns out to be equal to 10, 
i,e., the maximum oxygen uptake is ten 
times greater during this type of exercise 
than under resting conditions, again ir­
respective of body size. 

Finally, a further type of allometric ratio 
can be conceived, namely, the quotient of 
two allometric equations whose functions 
have different physical dimensions. These 
have been summarized in Table 2. Again, 
the RME is zero or close to zero, and which 
means that we are dealing with dimension­
less numbers whose numerical values are 
given only by the allometric coefficient (a). 
Among the dimensionless ratios obtained 
from these empirical allometric equations, 
the first one (Table 2, item A ) deals with 
the relationship between heart rate ( s " 1 ) and 
the mass-specific metabolic rate (watt • 
k g - 1 ) , which yields a direct correspondence 
between both functions, i.e., the frequency 
of the heart varies proportionally with the 
metabolic rate per unit mass. The second 
example (Table 2, item B) correspond to 
the ratio between cardiac output (ml • s" 1) 
and the surface area of the body ( m 2 ) , a 
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Item Allometric Ratios Allometric Equations References 

A Heart rate(s- i ) 3.61 M ' O - 2 7

 = j 0 5 M<>-00 Peters (1983) 

Mass-specific metabolic rate (watt • kg" 1 ) 3.42 M - 0 - 2 7 P- 2 3 8 & 2 5 7 

B Cardiac output (ml-s-1) 5.48 M 0 - 7 4 = 5 4 . 8 M 0 .07 ibid. 

p. 238 
Surface area ( m 2 ) 0.10 M 0 - 6 7 

Aortic wall tension ( N m _ 1 ) 

Aortic lenght (m) 

2 7 3 M ° - 3 5 = 170.6 M0.03 

0.16 M°-32 

Ibid 
p. 259 & 260 

Cardiac work (J) 

Heart volume (ml) 

8.91 x 1 0 - 3 M 1 - 0 6 

5.72 MO-98 

1.56 x 10-3 MO-08 ibid 
p. 257 & 260 

Blood sugar (g • liter-1) 

Cell diameter QUm) 

1.19 M " 0 - 0 7

 = o.o7 M 0 . 1 0 

16.1 MO-03 
Ibid 

p. 259 

relationship of wide acceptance in clinical 
medicine, used to normalize the minute-
volume of the heart with regards to dif­
ferent body sizes, i.e., the cardiac output 
is 54.8 ml • s'1 per square meter of body 
surface area. 

In consequence, the dimensionless allo­
metric ratios, which are particularly relevant 
for interspecific comparisons, can be obtain­
ed from allometric equations pertaining to 
the same function, or from allometric equa­
tions of functions which have different 
physical dimensions, a fact that confirms 
the wide biological applicability of these 
power equations. 

DISCUSSION 

After more than 50 years of extensive util­
ization of Huxley's (1932) allometric equa­
tion, the different authors disagree as to 
its physical dimensionality. Certain inves­
tigators have analyzed the dimensional 
homogenity of the entire equation, while 

others have concentrated their attention on 
one or both of its components, as for in­
stance on parameter a or on exponent (b). 

With regards to parameter (a) we have 
found that, in general, it is dimensionless 
(see Eqs. 4-9, 17, and also Eqs. 19-24). 
Alternatively, the physical dimensions of 
parameter a can be assumed to be present 
when its dimensions are identical to those 
the dependent variable( ( F ) : 
a) this happens when we utilize the dimen­

sionless ratio of body masses ( M p / M m = 
M), a condition which we have used pre-
ferently in previous studies (Günther, 
1975a, b; Günther & Morgado, 1982, 
1987); 

b) this also occurs when one considers that 
M b represents some "intensive"property 
(Heusner, 1982-88). This happens when 
exponent b is 0, and therefore M° = 1.0; 
in this case parameter a concentrates all 
physical dimensions of the right term to 
the allometric equation, which now is 
equivalent to the physical dimensions of 
the dependent variable (Y); 

TABLE 2 

Allometric ratios of structures and functions of mammals, whose physical dimensions are different. 
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c) finally, Heusner (1984-88) has suggest­
ed that parameter a should be considered 
as the dimensional part of the equation, 
which then is homogeneous with regard 
to variable Y. On the other hand, the 
power function of body mass (Mb) is 
dimensionless because it represent an 
"intensive" property, except when b= 1.0, 
in this case we are dealing strictly with a 
physical mass. Nevertheless, Butler et al., 
(1987, 1988) have recently pointed out, 
that neither dimensional analysis nor the 
theories of biological similarities can 
predict the body mass exponent (b) for 
basal metabolic rate (m), a conclusion 
which has led to a sharp controversy 
with Heusner (1988). However, this 
discrepancy is beyond the scope of our 
present analysis. 

The allometric exponent (b) is an index 
of "relative" growth (Huxley, 1932) and is 
commonly of a fractional nature (-1 < b < 
1); seldom is the numerical value of b greater 
than unity. On the other hand, exponent 
(b) is the result of a comparison between 
the growth rates of two variables (see Eq. 
7-9 and Eq. 18) which always yield pure 
numbers. 

In sum, parameter a is always dimension­
less if the three variables of the MLT-system 
are treated separately, as in Eq. 24. On the 
other hand, the mass-exponent b is either 
zero or unity, and the transfer of exponent 
(b) into the mass-coefficient a (Eq. 24) only 
changes the physical meaning of the term 
Mb, due to the introduction of the term 
M1'0 into parameter a. Therefore, the 
physical units of the dependent variable 
(Y) are defined exclusively by the di­
mensions of the term Mb of the allometric 
equation. 
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