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Twelve biological variables were submitted to dimensional analysis in accordance with the MLT-system of 
physics (M, mass; L, length; T, time). Each of these variables has a characteristic numerical value for the 
exponents a for mass, P for length, and y for time. By means of Newton's reduction coefficient {%), the three di
mensions (MLT) can be expressed as power functions of body mass (M b); the exponent (b) is the result of the 
combination of the three dimensional exponents (a, p, y). 

By linear regression analysis of 203 allometric exponents (bE) obtained from the literature, the following equa
tion was found for the regression exponent (bR) 

b R = 0.96a + 0.35P + 0.30y 

The estimated numerical coefficients (k) for the three exponents (a, P, y) of the basic dimensions (MLT) do not 
agree with those of the prevailing theories of biological similarity. 

INTRODUCTION 

Three and one-half centuries ago Galileo ex
trapolated the principle of similarity from the 
realm of the physical sciences to the study of 
form and function in animals and plants. Di
mensional analysis, on the other hand, is as
sociated with the names of Newton, Fourier, 
and Maxwell, and in modern times with those 
of Bridgman and Buckingham. These two 
concepts (similarity and dimensionality) were 
introduced into biology in 1917 by D'Arcy 
Thompson (29), and in 1927 Lambert and 
Teissier (20) formulated the first "theory of 
biological similarity". Since that time, several 
authors have proposed other biological simi
larity criteria (5-8, 10-17, 23-25). However, 
it is mandatory that any morphometric or 
physiometric prediction, which might be de
duced from a given theory, should be con
fronted with the empirical findings. Fortu
nately, this comparative analysis is now fea
sible due to the impressive quantitative infor
mation which can be found in four recent 
monographs on the subject (3, 25, 27, 28). 
Another favorable circumstance for this 
analysis is the fact that the great majority of 
these studies have utilized Huxley's (18) 
allometric equation to express the numerical 
results as functions of body mass (M) or of 

body weight (W), both of which can be con
sidered as an holistic reference system for 
each organism. 

GLOSSARY 

A. Symbols: 

b = canonical allometric exponent; 
b p = postulated allometric exponent (re

duced), in accordance with any theory 
of biological similarity; 

b E = experimentally obtained allometric ex
ponent, mentioned in the literature; 

b R = mean values of the empirical data (bR) 
for each function; 

t>R = estimated exponent, obtained from re
gression analysis; 

D. = allometric exponents corresponding to 
the four subdivisions of the body mass 
of 1-kg terrestrial mammal; 

k. = numerical values for each of the pa
rameters of exponents (a, p\ y); 

Q = any biological function, defined by 
means of MLT-system of physics. 

B. Greek Letters: 

a = mass exponent; 
(3 = length exponent; 
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Y 

X 
T 

X 

time exponent; 
mass ratio (M /Mm), between prototype 
(p) and modef (m)*, in order to be able 
to cancel the corresponding physical 
dimensions and to exclude from the 
presents analysis the influence of pa
rameter (a) of the allometric equation 
(eqn. 9); 
length ratio (L /Lm); 
time ratio (T /T )Tand 
Newton's reduction coefficient (Q /Q ) 

DIMENSIONAL ANALYSIS IN THE 
BIOLOGICAL SCIENCES 

Whenever structures or functions of individual 
members of the same, or of different, species 
are compared, one member is defined as the 
prototype (p) and the other as the model (m), 
and when this is done, a comparison can be 
made in terms of mass (M), length (L), and 
time (T). The formal analysis begins with the 
adimensional ratios of mass (u. = MJMm), 
length (X = LJLJ, and time (T = TJTJ. Since 
the great majority of the biological functions 
(Q) can be defined in accordance with the 
MLT-system of physics 

2. the acceleration of gravity (g) on earth 
is also invariant (g = LT 2). 

In the first postulate we assumed that p7p m 

= 1.0, and in the second that gjgm = 1.0. The 
introduction of the ratios u., X, T into the first 
postulate gives 

u l - 3 = 1.0 

and from the second we obtain 

Xr2 = 1.0 

(4) 

(5) 

Since the first postulate is equivalent to u. 
= A,3, and the second to T = Xm, then eqn. 3 can 
be expressed as 

X = X3a № (6) 

On the other hand, X = |X1/3, and when this 
equivalence is introduced into eqn. 6, we ob
tain 

_ , , a+ l /3ß + l/6Y x = v (7) 

Thus, the "reduced" mass-ratio exponent (bp) 
can be defined as follows 

Q = M a L p T* ( 1 ) b p = a + l/3ß+ 1/6Y (8) 

the ratio of a given function (Q), between 
prototype (p) and model (m), yields Newton's 
reduction coefficient 

x = Q / Q m (2) 

Substituting the corresponding dimensional 
rations (u,, X, T), we obtain 

X = M" W T T (3) 

THE ALGORITHM FOR A THEORY OF MECHANICAL 
SIMILARITY 

With the aim of establishing formal relation
ships among the three fundamental ratios (u., 
X, x) for a "mechanical" similarity (21), at 
least two postulates must be established: 

1. body density (p) is assumed to be con
stant (p = ML'3); and 

THE ALLOMETRIC EQUATION 

In 1932 Huxley (18) introduced the allometric 
equation into the biological sciences 

Y = aMb (9) 

in which Y is any morphological, physiologi
cal or ecological variable, M is body mass, 
while a and b are the mass-coefficient and 
the mass-exponent, respectively. The advan
tage of this apparently simple formula is that 
its logarithmic form represents the equation 
of a straight line. 

log Y = log a + b log M (10) 

which allows for the statistical treatment of 
biological data after their log-log transforma
tion. 

* Prototype (p) means a large or small scale organism to which a model (m) organism is geometrically, chemically, or 
physically related. 
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TABLE I 

Comparison of different theories of similarity, based on the numerical values of the coeffi
cients (kj, It,, k )̂ for the three exponents (a, p\ y) of the MLT-system 

Items Similarity a 

Exponents 

P References 

Mechanical 

Biological 

Elastic 
Empirical 
coefficients 

1/3 

1/3 

1/4 

1/3 

1/6 Galileo (1638) 

1/3 Lambert & Teissier (1927) 

1/4 McMahon(1973) 

1/4 Present study (1992) 

COMPARISON BETWEEN THEORETICAL AND 
EMPIRICAL EXPONENTS 

For the different theories of similarity, Yates 
(31) has suggested the following algebraic 
equation 

b = pa + qP + ry (11) 

The three coefficients (p, q, r) are un
known, whereas the values a, (3 and y are 
defined by the dimensional analysis of the 
biological variable involved. 

In order to obtain a numerical solution of 
eqn. 11 for a given theory of similarity, we 
employed the following model 

b R = kjOc + k 2p + k3y + e (12) 

As a result of the multiple linear regression 
analysis of 203 empirical allometric exponents 
(bE), found in the literature (3, 27), we ob
tained the following adjusted equation 

\ = 0.958a + 0.346p + 0.296y (13) 

in which the corresponding standard errors 
(SE) for kj, k 2 and k3 are 0.0102, 0.0023 and 
0.0051. The determination coefficient for eqn. 
13 was r 2 = 0.993. 

The estimated values for k l t k 2 and k 3 (eqn. 
13) can now be compared with the corre

sponding values of the prevailing theories of 
biological similarity: 

1. Mechanical Similarity 

This physical similarity (21) was postulated 
by Galileo, in 1638, on the basis of two as
sumptions: 

i) the density (p) of prototype (p) and 
model (m) should be identical; 

ii) the relationship between length (L) and 
time (T) can be defined by means of the char
acteristics of a physical pendulum, where T = 
2n (L/g)1 /2, g is the acceleration of gravity 
on earth. 

It is interesting to note, that this theory of 
"mechanical similarity" was applied by Gali
leo to interpret forms and functions in ani
mals and plants of different sizes. 

The respective numerical values for kv 

and k3 are shown in Table I (item 1). 

2. Biological Similarity 

This theory was postulated by Lambert and 
Teissier (20) in 1927, and was also based on 
two assumptions: 

i) the constancy of body density (p), a 
statement which is corroborated by the fact 
that all organisms are on the verge of flota
tion when placed in water; and 
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ii) that time (T) and length (L) must vary 
proportionally (T a L); unfortunately, this 
postulates is only an a priori assumption. 

The numerical values for k. are given in 
Table I (item 2). 

3. Elastic Similarity 

With regards to McMahon's (23) "elastic" 
similarity, it is noteworthy that this approach 
was based on animal proportions and on the 
buckling and bending loads, which the weight-
bearing structures must support in animals of 
different size. This particular theory is based 
on the stability and flexure of bony struc
tures, which are both important in animal lo
comotion and muscular dynamics. 

For the numerical values of k. see Table I 
(item 3). 

DISCUSSION 

One of the main problems of biological scal
ing is to decide which reference system should 
be chosen to compare morphometric and 
physiometric data obtained from animals of 
different size. These prospective reference 
systems must have one characteristic in com
mon, namely, that they should be of an inte
grative nature, i.e., they must represent an 
holistic approach. Among the best candidates, 
one could mention: 

A. body mass (M), which represents the sum 
of all cells, together with the weight-
bearing system (bones and ligaments), and 
the extracellular fluid compartment 
(plasma plus interstitial fluid); 

B. the metabolic rate (m), which corresponds 
to the oxygen consumption (V^) per unit 
time, or to the total heat production per 
unit time (thermogenesis), since both 
functions are associated with the aerobic 
metabolism of all mitochondria. 

The great majority of biologists have pre
ferred body mass (M) as a convenient refer
ence system for interspecies comparisons. 

The remainder of the discussion will be 
concerned with the analysis of the three pa
rameters (kj, \ and kg) from eqn. 12, and how 
they correlate to each other. 

A. About the Coefficient (k,) of the 
Mass Exponent 

From a physical or a chemical point of view, 
mammalian organisms cannot be defined as 
homogeneous compartments, since they are 
characterized by multifarious structures and 
functions. Among the major subdivisions of 
body mass (Pace et al., 26), one should con
sider: 

1. the weight-bearing musculo-skeletal sys
tem; 

2. the internal organs or viscera; 
3. the containment integument, represented 

by the skin; and 
4. the blood as a transport system of aque

ous nature. 
The corresponding proportions of these 

four compartments were studied in a 1-kg 
terrestrial mammal (26), whose respective fat-
free masses can be defined by means of the 
allometric parameters, which are summarized 
in Table II. It is noteworthy, that only in the 
present case (W = 1 kg), the four allometric 
equations can be summated, despite the fact 
that the exponents (b.) differ from unity, with 
the exception of item 3 (skin), in which case 
the allometric exponent (b3 = 1.010) is prob
ably not significantly different from unity. 
However, the comparison between carcass 
skin, and viscera (Table II), should be inter
preted as a zero-sum solution for the organ
ism as a whole. 

TABLE II 

Relative distribution of the fat-free masses of 
the four subdivisions of the body mass 

of small terrestrial mammals (Pace et al., 28) 

Subdivisions Parameter Exponent 
(b) 

1. Carcass 0.625 1.043 
2. Viscera 0.148 0.880 
3. Skin 0.141 1.010 
4. Blood 0.081 0.952 
Total 0.995 
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Besides this subdivision of a mammalian 
organism into four main structures (Table II), 
one should consider that, as summarized by 
Peters (27), for instance, among the visceral 
organs the allometric exponents are not al
ways equal to the mean value t>2 = 0.88 (Ta
ble II); since, for the spleen b E = 1.06; for the 
heart and the lungs b E = 0.98; for the gut b E = 
0.94; for the kidneys b E = 0.84; and for the 
brain b E = 0.66. Whith regards to the 
allometric exponent for the brain-mass of 
mammals (27), we must add that these values 
were excluded in the present analysis, due to 
the fact that the brain is not a visceral organ, 
but a processing center of the sensory input 
from the surface of the body and from nu
merous peripheral sense organs. The numeri
cal value of the allometric exponent for the 
brain (b = 2/3) is the same as the relationship 
between the surface and the volume of any 
geometric body. 

In sum, and as shown in Table III (items 3 
and 5), the allometric exponent (b) for the 
volume (V) and the mass (M) functions are 
close to unity (1.036 and 0.975), and in con
sequence the mean density (p) of mammalian 
bodies is practically constant, in agreement 
with the first postulate of all theories of bio
logical similarity. 

Finally, with regards to body mass (M) as 
a universal reference system, several authors 
(1,2) have denied the possibility of utilizing 
the body-mass exponent for metabolic scaling 
based on dimensional analysis, but this spe
cific problem is beyond the aim of the present 
study. 

B. Concerning the coefficient (k^) 
for the length exponent 

With regard to the biological length functions, 
it is interesting to compare the theoretically 
expected value (b p = 1/3) with the 20 empiri
cal values: \ = 0.314 ± 0.0094 (Table III, 
item 1). 

Economos (4) on the other hand, obtained 
an allometric exponent %R = 0.314 for the 
body-head lengths of 240 mammalian species. 
This value is identical with our data (see Table 
III, item 1). Heusner (17) has digitized 
Economo's data (n = 240), and obtained a 
slightly different mean value (bR = 0.325 ± 
0.003), which is significantly different (p < 

0.001) from the value (b p = 0.25) proposed for 
length functions (L) by McMahon (23), as 
indicated in Table I, item 3. 

C The coefficient (k^) for the exponent 
of time 

For biological time functions we obtained a 
mean value o f \ = 0.251 ± 0.0099 (Table III, 
item 12). On the other hand, Lindstedt and 
Calder (25), in their extensive study on 
physiological time and body size, studied 15 
different time functions in homeothermic ani
mals, which included a wide range of chrono
logical functions, i.e., from the fast muscle 
contraction to the lifespan of mammals in 
captivity, and found that the 95% confidence 
intervals (0.227-0.278) included b p = 0.25 as 
the most likely body mass exponent (mass174) 
for biological scaling, a power function which 
agrees with McMahon's theory of elastic 
similarity (Table I, item 3). 

D. About the lengfh-time-mass relationship 
(^i> ^2> kj) 

The significant difference (eqn. 13) between 
length (k^ = 0.346 ± 0.0023) and the time co
efficient (kj = 0.296 ± 0.0051) seems to indi
cate that the "length-time" relationship cannot 
be described adequately (see Table I) by 
means of Galileo's simple pendulum mode 
(kj = 1/3; k 3 = 1/6), nor with Lambert and 
Teissier's biological similarity theory (1^= 1/3; 
k3 = 1/3), nor by McMahon's elastic similar
ity criterion (k^ = 1/4; k 3 = 1/4). 

More recently, through the use of dimen
sional analysis, similarity criteria and 
allometry, it has been possible to establish 
terrestrial locomotion (30) and a physical law 
for a wrist-pendulum system in humans (19). 
The periodic time (x^ could be correlated with 
mass (M) and length (L) of the wrist-pendu
lum system, such that 

T O = a (M 1 / 1 6L 1 / 2)C (14) 

where 

a means the corresponding allometric pa
rameter, and 

c is the exponent for this twice-scaled law, 
which can be referred as pertaining to the 
"moment" class. 
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TABLE III 

Dimensional analysis of 12 biological functions and mean allometric exponents calculated 
from the literature (3, 27) 

Dimensions Allometric Exponents 
Item Functions M L T 

a P Y n b R ± S E 

1 Length 0 1 0 20 0.314 + 0.0094 

2 Area 0 2 0 7 0.687 ±0.0129 

3 Volume 0 3 0 41 1.036 ±0.0086 

4 Minute-volume 0 3 -1 27 0.768 ±0.0115 

5 Mass 1 0 0 29 0.975 ± 0.0177 

6 Concentration 1 -3 0 6 -0.0675 ±0.0186 

7 Energy; work 1 2 -2 6 1.066 ±0.0302 

8 Pressure 1 -1 -2 8 -O.010 ± 0.0169 

9 Power 1 2 -3 33 0.746 ± 0.0066 

10 Resistance 1 -4 -1 4 -0.752 ± 0.0427 

11 Compliance -1 4 2 5 0.960 ±0.0510 

12 Period 0 0 1 17 

I n = 203 

0.251 ±0.0099 

The non-linear character of eqn. 14 is 
noteworthy, and the degree of curvature of 
the Gaussian coordinate system (c) can be 
measured by the slope in a log by log plot. 

On the other hand, it is generally assumed 
that the metrics of living organisms belong to 
an Euclidean space (c = 1.00), and that any 
point inside the organism can be defined by 
means of Cartesian coordinates. Nevertheless, 
this simplified assumption is not necessarily 
true, because the prevalent form in living be
ings is approximately spherical or cylindrical. 
For this reason, a spherical or a cylindrical 
geometry should be applied to the biological 
realm, and in consequence, any distance 
should be measured in a manner similar to 

the geodesies on earth, i.e., depending upon 
the curvature of the intrinsic (biological) ge
ometry. For the sake of simplicity, let us as
sume that all terrestrial mammals have a 
spherical shape, such that the curvature (c) is 
inversely proportional to the mean body ra
dius (r), which in turn is a function of the cu
bic root of body volume (V) or of body mass 
(M), provided that body density (p = M/V) 
remains constant. Thus, the corresponding 
body radii (r.) must vary in accordance with 
the body mass range (M) of terrestrial mam
mals (from a 3-g shrew to a 3-ton elephant), 
which represents a body radii scope of 102. 
But, if we take into account the radii (curva
tures) of all living beings (25), from my-
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coplasmas (10 1 3 g) to whales (108 g), then the 
corresponding radii scope will be 107. 

When quadrupedal locomotion of mam
mals of different sizes was studied at the trot-
gallop transition point, Heglund et al. (9) 
found the allometric exponents for stride fre
quency (bE = -0.14), and for stride length (bE 

= 0.38), two values which are consistent with 
the theory of "elastic similarity" (24), whose 
predictions were b p = -1/8 or -0.125 for stride 
frequency, and b p = 3/8 or 0.375 for stride 
length. Curiously enough, the mechanical 
similarity (Table I, item 1) already predicted 
a value of b p = -1/6 for stride frequency and 
b p = 1/3 for stride length, both based on a 
simple pendulum-mode similarity. 

Finally, we would like to emphasize that 
in order to interpret form and function of liv
ing beings, the present study was based on an 
Euclidean geometry and on a Newtonian di
mensional analysis. Nevertheless, it is very 
likely that the prevailing geometry in all or
ganisms is mainly of "fractal" nature, that the 
corresponding functions are not linearly cor
related, and that almost all biological variables 
are of a "non-linear" nature. However, as a 
first approach, we can say that the general 
regression equation (eqn. 13) is a valuable 
tool to obtain reasonable figures for at least 
12 variables of biological interest (see Table 
III). 
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