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Linear analysis of auto-organization 
in Hebbian neural networks 
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Departamento de Biologia, Facultad de Ciências, Universidad de Chile, Santiago, Chile 

The self-organization of neurotopies where neural connections follow Hebbian 
dynamics is framed in terms of linear operator theory. A., general and exact 
equation describing the time evolution of the overall synaptic strength connecting 
two neural laminae is derived. This linear matricial equation, which is similar to 
the equations used to describe oscillating systems in physics, is modified by the 
introduction of non-linear terms, in order to capture self-organizing (or auto-
organizing) processes. The behavior of a simple and small system, that contains a 
non-linearity that mimics a metabolic constraint, is analyzed by computer 
simulations. The emergence of a simple "order" (or degree of organization) in 
this low-dimensionality model system is discussed. 
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INTRODUCTION 

Artificial neural networks are a conceptual 
tool developed during the last half of the 
20th century as a tool to build computational 
theories of brain function. In 1943, appeared 
what we can call "The first paper" in this 
field (McCulloch and Pitts, 1943). This work 
had an "algebraic" flavor as it tried to obtain 
results and theorems based on the point of 
view that neurons behave as elementary 
logical functionals like disjunction or 
negat ion. This fundamental paper, un
doubtedly influenced by the work of Alan 
Turing, tried to deduce very general results 
about brain function. The pathway opened by 
this paper was important as it made clear that 
the understanding of brain function requires, 
beside the accumulation of experimental 
data, a theoretical framework. But neurons 
are not the s imple "logical e l ements" 
envisaged by those authors, they have a 

Output activity = Cj * (Input,) + C, * (Input.,) 

complex biology in which the electrical 
phenomena at the level of the axon are 
the end result of complex biophysical inter
actions between a continuously changing 
set of postsynaptic currents that propagates 
in l inear, and non l inear, fashion be
tween thousands of synapses and the cell 
body. 

This more accurate picture of neuronal 
dynamics has been incorporated in neural 
networks models since the mid-fifties (see 
Anderson and Rosenfeld, 1988, for a review; 
Rochester et al, 1956, for an example of an 
early realistic simulation). An important 
simplification is usually assumed as many 
complex biophysical interactions are ignored 
and neurons are treated as simple linear 
elements that perform a weighted average of 
its inputs (Fig 1). Thus the output of a neuron 
is constructed as a linear combination of its 
inputs weighted by the synaptic strength (C) 
of each input: 

ii 

+ ... + C n * (Input n) = X Cj * (Input) 
j = l 

Eqn 0 
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In spite of the extreme character of this 
simplification, a complete field of research 
has been created around this view of 
neuronal function. 

Another important factor incorporated into 
neural network models is the concept of 
"plasticity" or "learning" at the level of 
synaptic connections. The synaptic weights 
(the Cj of Fig 1) are thus assumed to be 
cont inuous ly varying over t ime. This 
variation changes the effective connectivity 
of the network; hence its computational 
properties. Two main mechanisms are used 
to define the direction and magnitude of the 
change for each C . One type of mechanism 
depends on a global rule that somehow 
"knows" which are the "correct" values that 
the C must have and adjusts sequentially 
every synaptic connection in the network 
(Kohonen, 1982). Examples of this method 
of adjusting the Cj or iginated the 
"percep t ron" (Block, 1962) and, more 
recently, the many versions of multi-layer 
neural networks constructed by the "back-
propagat ion" method (Rumelhart et al, 
1986). The second mechanism is more 
interest ing from the point of view of 
neurobiology as the rule for changing each 
Cj is local, depending only on the input and 
output activity of neurons. This notion 
reflects our deep expectations about the 
biochemical steps that must happen at the pre 
and post synaptic levels. In effect, our 
current conception of synaptic plasticity 
demands that local ly produced neuro
transmitters, factors or reverse-transmitters 
trigger the action of a complex enzymatic 
cascade that changes the biophysical 
properties of the synapse. This notion is not 
new, clear references can be found in 
writings of Cajal and Pavlov, but because 
Donald Hebb enunciated it in a particularly 
clear way in an influential book (Hebb, 
1949), this type of plasticity is known today 
as "Hebbian". Hebb s rule can be translated 
in a particular simple mathematical form: 

this rule is also known as a "correlation" 
rule. 

These two ideas {i.e., that neurons produce 
a weighted average of their inputs, and that 
synaptic strength depends on the correlation 
between pre and post synaptic activities) are at 
the very center of most modern models of neural 
activity. A review of this enormous field is not 
our goal. Instead this paper explores how, when 
these two ideas are taken together, an equation 
for the time evolution of the C can be found. 
Furthermore, this evolution equation is similar 
to equations found in the physics of oscillating 
systems, such as strings and membranes, and 
is related with the algebraic analysis of systems 
of linear differential equations and linear 
operator theory. 

MATHEMATICAL FORMULATION AND 
COMPUTER SIMULATION 

To clarify ideas we consider the following 
model of a "neural network". Let Q and P 
represent two one-dimensional layers with q 
and p neurons respectively (Fig 2). The Q 
layer has no lateral interaction between its 
neurons, while the P layer has lateral 
interactions represented by intralaminar 
synaptic weights W and receives input fibers 
from Q represented by C s Q layer neurons 
are indexed by Greek symbols (a, 8, ... y) 
while P neurons are indexed by Latin 
symbols (x, y, ... z). The interlaminar 
synaptic weight between Q layer neuron at 
position a and a P layer neuron at position x, 
at time t, is C (t). In the P layer, the 
influence that cell at position y has over a 
neuron located at position x is represented by 
W and it is considered time-invariant. The 
activities of Q and P neurons are represented 
by I and A, respectively. The Q layer could 
be thought as the "input" layer while the P 
layer would be the "processing" layer. 

Our first task is to combine the notions 
described by equation 0, figure 1 and figure 

Change in synaptic strength = \x (presynaptic activity) * (postsynaptic activity) 
For a particular synapse: A C = |i (Inputj) * (Output activity) 

(j is a proportionality factor that specifies the 
rate of change. Because the change in 
strength depends on the simultaneous activa
tion of the synapse and the postsynaptic cells 

2 to obtain an expression for the rate of 
change of the interlaminar synaptic weights 
C (t). It is important to notice that the com
plete set of C (t) forms a rectangular q x p 
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l n p u t n 

Fig 1. The neuron as a weighted averager. The neuronal 
inputs (Inputx) affect the post-synaptic cell through coupling 
variables (C x ) that reflect the synaptic strength. The post
synaptic output ("Output") is simply the summation of all 
the terms (C x * Input x ) . This formal model of a neuron is 
very simple as it neglects saturation effects. 

matrix C(t). This calculation would be devel
oped with care as its deduction illuminates 
important aspects of the mathematics behind 
neural networks. 

The activity of a P neuron, at position x, is 
equal to: 

A x(t) = (W^AjU) + W x 2 A 2 ( t ) + ... + W x p A p ( t ) } + 

{C x l (t)I ,(t) + C x 2 (t) + ... + C x q (t)I q (t)} 

This equation establishes that the activity of 
every P cell is controlled by two con
tributions. One is derived from outside the P 
lamina and is modulated by the set of inter-
laminar weights C (right parenthesis), and 
the other is produced inside the P layer and 
modulated by the synaptic weights W that 
represent lateral interactions (left paren
thesis). This equation shows that the activity 
of any given neuron of the P layer depends 
on all the other cells of that same layer. The 
solution, for the activities A x(t), can be easily 
obta ined, as this equat ion is formally 
equivalent to a system of (linear) p linked 
equations. In fact, the set of equations de
scribing the activity of all P layer cells is: 

q 

(1 - W ] ] ) A , ( t ) - w 1 2 A , ( t ) - . . . - W ] A p (t) = 
j = i 

q 

- w x , A , ( t ) - w x 2 A 2 ( t ) - . . . - ( l - w x x ) A x ( t ) - . . . - w x A p(t) = 5 
j = 

q 

-w ,A,(t)-w ,A,(t)-...-(l-w )A (t) = Z-i C .(t)I, 
pi i v / p2 2 v / V P P ' p v ' p r 7 j 

Fig 2. Geometrical model of the neural network. Two layers 
of neurons (P and Q) are connected via plastic synaptic 
connections ( C m ( t ) that change over time according to 
Hebb's rule (arrows). Each P layer neuron receives inputs 
from all Q layer neurons and from all P layer neurons via an 
invariant network of lateral interactions (depicted here by 
W) that are assumed to decrease with distance. In order to 
avoid "border" effects, and to maintain strict translational 
invariance, each layer is assumed to be connected as a circle, 
thus every neuron has a "left" and "right" neighbors. This 
architecture is easily applied to bi-dimensional layers. 

This linear system of equations can be 
written in matricial form as: 

(Id-W)A(t) = C(t)I(t) 

with Id denoting the identity matrix of order 
P 

Thus, if (Id-W) is invertible, it has the 
following solution: 

C (t)I 
M J 
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A(t) = (Id-W^CWKt) = WC(t)I(t) 

with W = (Id-W)"1 

Thus, given a set of input activities I, in layer 
Q, the set of activities A induced in layer P, 
at position x, is: 

p q 

A x(t) = S w x y I c / t i y t ) E q n I 

y = 1 B = 1 

©m(t) = C x a(t + k)-Cxa (t) 

which in term of the instantaneous change is: 

m m 

©m(t)= SAC x a(t+i) = M S Ax(t+i)Ia(t+i) 
i = 1 i = 1 

using the expression for A x(t): 

Using this last equation we can calculate the 
rate of change of the matrix C(t) over time. 
As stated above, if each single inter-laminar 
connection follows a Hebbian dynamics it 
instantaneous rate of change is: 

AC x a (t) = n A x(t) I„(t) Eqn II 

This basic equation relates the strength of a 
single inter-laminar synaptic weight with the 
activities of both layers, and we would like 
to use it as a starting point to derive an 
"evolut ion" equation relating C(t) with 
structural parameters of layers Q and P. 

The mean rate of change of C x a ( t ) can be 
approximated as: 

0 (t) 
m v ' 

.(t+i)L(t+i) I„(t+1) 
B= 1 

Because the intra-laminar interactions W do 
not change with time and we are only 
interested in the mean variations of C -thus 
effectively stating that C y B(t+k) = C B(t) Vy, 
ft (see Fig 3)- we can approximate trie time-
evolution of each Cyji by two components. 
One component represents the average trend 
of the variation of C y B , while the other 
component is an unpredictable "noise". Thus 
the trend is obtained by taking the average of 
Cy_ during time intervals that are "long" 
with respect to the fast and noisy transitions. 
With this simplification the last equation can 
be written as: 

Average C 

Time 

Fig 3. A crucial approximation. The dynamics that governs the time evolution of each ( C m ( t ) can be subdivided into fast and 
slow components. The fast component can be thought as a random "noise" (jagged line) superimposed to a general trend. Thus, 
locally, the (C j ( l ( t ) profile is approximated by a step function that replaces ( C m ( t ) ) by a local average of the recent past. 
Without this approximation equation III can not be deduced. This prediction helps us to obtain an evolution equation about the 
average value of each connection. 
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0 (t) 
m v ' 

,I„(t+i) I,,(t+1) } with {21 I (t+i) I„(t +i) = m j „ „ Vt 
y = 1 6 = 1 

The expression inside the brackets can be 
thought of terms of the spatial auto
correlation of the activity of layer Q. If we 
assume that this layer is analogous to a 
sensory lamina (like the retina), its neural 
act ivi ty I must have the same spatial 
correlations J as the spatial correlations of 
the set of stimuli impinging of that lamina. 
Thus, the instantaneous rate of change of the 
mean is: 

A C (t) = 
C»„(t+k)-C M ( t ) 

xyCyllMJctB 

y.S 

In matrix form, the following evolution 
equation can be obtained: 

C = f i W C J Eqn III 

This equation, which is many times asserted 
without demonstration, serves as a founda
tion of all modern studies concerning auto-
organization (Malsburg, 1973; Linsker, 
1986; Miller et al, 1989; Goodhill, 1993), 
and has many important consequences. First, 
it is a linear differential^ equation where a 
linear operator H(X) = WXC appears spon
taneously (thus we are looking to solutions 
of X '= (iH(X)). Second, the operator H 
reflects two "structural" facts: a) the con
nectivity of layer P and b) the correlation of 
the set of inputs. 

Interestingly, equations of this type have 
been in tensively studied by modern 
functional analysis. The solutions can be 
found by studying the eigenvalues and 
eigenvectors of operator H and they have the 
following general form: 

C(t) = \ | / m l e ^ i t 

where Mr . is an eigenvector of H and X , its 
T m l ° m l 

associated eigenvalue. 
However, a simple glimpse shows that 

this mathematical model is incomplete to simulate the auto-organization of neural 

connections. In effect, the solutions of 
equation III are all exponential functions that 
grow (or decay) towards infinity (or to zero), 
thus collapsing any order in the connectivity 
pattern. In the literature it is common to see 
renormalization techniques, like to divide 
each C x a (t) by the maximal value of C(t) at 
that moment to tackle this problem. This ad-
hoc technique solves the mathematical 
problem of uncontrolled growth, but it is an 
unsatisfactory method as it does not map 
easily into a physiological process. 

To mathematical ly capture an auto-
organizing agent, equation II should be 
modified with extra terms that reflect 
mechanisms of synaptic modification not 
based in correlation (i.e. "extra Hebbian 
mechanisms") and are coherent with cellular 
mechanisms. The first modification is to 
incorporate competition, among synapses, 
for the presence of a scarce metabolite 
required for changing the synaptic apparatus. 
In this context, each synapse in the network 
is under the action of two "forces": a positive 
growth due to a Hebbian mechanism and a 
decay due to the level of "maturation" of the 
network. Initially this (secondary) effect is 
small, but it grows non-linearly and it affects 
all synapses equally. Equation III is then 
transformed to: 

C = p - W C J - I I C II 2 

The above equation reflects how a com
petition mechanism is incorporated into the 
language of linear operators. It can not be 
solved analytically as it contains two "non-
linearities": the quadratic term and the fact 
that the C's can not be negative (we are only 
model ing exci ta tory synapses) . In the 
absence of an analytical solution the equation 
can be numerically solved; however, the 
framework of linear systems can help us to 
understand the simulations and to predict, 
quantitatively, the properties of the end state. 
To clarify ideas we are going to present 
examples of one-dimensional networks with 
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final state (n=10) 

W 
1.0 

0.0 
simulation #1 

3 2 1 0 2 3 
Distance 

J={1,0.5,0,0,0,0,0,0,0,0.5} 

W 
1.0 

0.0 

C 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0.2 0 0 0 

(0.16) 

0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0.2 0 0 0 

(0.21) 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0.2 0 0 0 

(0.2) 

0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0.2 0 0 0 

(0.13) 

0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0.2 0 0 0 

(0.1) 

3 2 1 0 1 2 3 
Distance 

simulation #2 

Fig 4. Auto-organization in a small network (n — 10). Two examples of the final state when n is even. The two simulations 
differ in the pattern of lateral interactions, in simulation #1 the autoexcitation value W ( ) = 1.0; in simulation #2, W ( 1 = 0. This 
difference, which radically changes matrix W, does not qualitatively affect the final state. A single P layer neuron receives all 
the inputs from alternate cells in layer Q. The final results of simulation #2 are given in parentheses in the final matrix C. In 
both cases the J matrix was built by shifting the vector J. 

small numbers of neurons (n = 5, ... 10). In 
these examples, the network topology is 
assumed to be a cylinder and the pattern of 
lateral interactions, as well as the spatial 
correlation of the set of stimuli, are invariant 
under translation. Thus, matrices W and J are 
circular matrices. This geometry is artificial, 
as it avoids border effects, but enables the use 
of linear analysis and clearly shows the 
emergence of order in a spatially homogenous 
system. Under these restrictions linear 
analysis of equation II predicts that: a) the 
final steady state is reached in exponential 
time, b) the final connections must contain 
symmetries, c) some of these symmetries 
must reflect the periodic solutions proper of 
the homogeneous (linear) system X'= uH(X). 

Simulation for n = 6, 8, 10 

The cylindrical topology, when n is even, 
implies that a periodic function (i.e., the nat
ural eigenfunctions of the homogeneous 
problem) can be fitted exactly. Numerical 
simulations of these cases show an striking 
degree of final auto-organization (Fig 4), 
with only one P neuron receiving inputs from 
the Q layer. Most of the original connections 
(n 2 = 36, 64 or 100) disappear and only n/2 
connect ions survive. In teres t ingly , the 
surviving connections are symmetrically 
separated by connections of strength 0 and 
this pattern does not depend on a specific 
configuration of the intensity of lateral 
interaction (W) in layer P. This alternation 
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A 
initial state (n=5) final state (n=5) 

0.48 0.58 0.62 0.51 0.21 0.011 0 0 0 0 
0.06 0.10 0.68 0.50 0.02 Maturation process 0.011 0 0 0 0 
0.60 0.41 0.63 0.55 0.50 • 0.011 0 0 0 0 
0.90 0.18 0.56 0.90 0.50 0.011 0 0 0 0 
0.67 0.99 0.17 0.46 0.56 0.011 0 0 0 0 

W= {1, 0.5, -0.25, -0.25, 0.5} 
J ={1 ,0 .5 ,0 ,0 ,0 .5} 

B 
final state (n= 11) 

Fig 5. Auto-organization in a small network (n = 5 and 11). Two examples of auto-organization when n is odd. A) For small n 
(5) every Q cell layer projects to the P layer equally. Thus all arrows depicted in the final state have the same value. To give an 
idea of the initial state the initial matrix C is explicitly given, some (9) of the initial "arrows" connecting P to Q are also given. 
The final state is independent of the values found in the initial matrix C. B) For larger n (9, 11, 13) the final state resembles the 
final situation found for n = even. The final connections are not equal (the wider and darker arrow represents a final connection 
having approximately the double value that the other two) and they are not equally spaced in the network. The W and J 
matrices, for both simulations, were built using the W and J vectors shown in A. 

reflects the competition between adjacent 
connec t ions mediated by the lateral 
interactions in layer P. Because of the strong 
symmetry der ived from transla t ional 

in variance the P neuron that receives all the 
surviving inputs change from simulation to 
simulation, but the overall pattern remains 
unchanged. 
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Simulation for n = 5,7,9, 11 

Networks with an odd number of neurons 
behave rather differently because the 
eigenfunctions of the homogenous problem 
do not fit exactly into the network. Thus, 
as the final solution must respect the funda
mental symmetry introduced by trans-
lational invariance, a qualitative new form 
is reached. The final state again has most 
of its connections equal to 0, and only a 
single P layer neuron receives all the 
connections. The difference, with respect to 
the case n = 2 * k, arises in the number and 
identity of the neurons from the input layer 
that project to the P layer (Fig 5). The 
periodic pattern found for even cases is 
replaced by a more irregular one, in which 
not all surviving connections have the same 
final strength (Fig 5A) and where the strict 
periodic al ternat ion is replaced by an 
approximate alternation, or every Q layer 
neuron sends inputs to a single P layer cell 
(Fig 5B). Also, the final state is reached 
much more slowly demanding 5-10 times 
more iterations. 

CONCLUSION 

The language of l inear operators , and 
especially the notion of eigenfunctions, is 
par t icular ly suited to formalize auto-
organizing neural systems that follow Hebb's 
rule with modifications that reflect metabolic 
constraints. Although current mathematical 
theory can not solve exactly the non-linear 
problems that characterize self-organization 
in such complex sys tems, it can give 
qualitative arguments about the asymptotic 

behavior of solutions. The study of small 
systems in search of semi-analytical tools is 
extremely important as pure numerical (i.e., 
computer) simulations become more and 
more complex. In effect, in current computer 
simulations it is not clear which self-
organizing features are the consequences of 
ad-hoc elaborated numerical techniques. 
Finally, we must add that the examples 
shown in this paper are particular examples 
of a more general phenomenon: the ap
pearance of order through the recursive 
application of local rules among components 
having the same set of properties. 
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