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The aim of the present study is to emphasize the applicability and versatility of the
allometric equation in the biological sciences. This equation (Y = a » M”) was
introduced by Huxley (1932) for intra- and interspecific comparisons of mor-
phological, physiological and ecological variables (Y), when they are expressed as
functions of body mass (M). The regression analysis of the experimental data,
plotted in a double logarithmic scale, vields a straight line, which is equivalent to
the logarithmic form of the above mentioned allometric equation [log Y = log(a) +
(b) * log(M)]. Only the exponent (b) can be calculated a priori for a given func-
tion, based firstly on the corresponding dimensional analysis in accordance with
the MLT-system of physics, and secondly on one of the theories of biological
similarity, while parameter (a) is of empirical nature. A relevant feature of the
allometric equations is that they can be treated algebraically to obtain allometric
ratios, mass independent numbers (MIN), and even dimensionless numbers
(MOLPT?), which are valid for all organisms pertaining to the same taxonomic
classification.
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analysis, logarithmic scaling.

INTRODUCTION

For any quantitative analysis of biological
data, it is necessary to take into account that:
i- the size spectrum of living beings (Mc-
Mahon & Bonner, 1983) is of 21 orders of
magnitude, which includes at one end the
mycoplasms (1013 g) and on the other the
blue whales (10® g); ii- that the relationship
between any variable (Y) and body mass
(M) is generally non-linear. In biological
sciences, it is customary to utilize Huxley’s
(1932) altometric equation for this purpose:

Y =a+M? (1)

This simple power equation in its logarithmic
form reads as follows:

log (Y)=1log (a) + b ¢ log (M) 2)

The latter equation corresponds to a straight
line (Fig 1), and is the most elementary
procedure for the statistical treatment of ex-
perimental data. An additional advantage
of allometric equations is that they can be
submitted to algebraic operations, as for
instance:

1) the product of two allometric equations
yields:

MX e MY = M(x+w) (3)

2) or else, the quotient of two equations
gives:

M¥/MY = Mt (4)
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Fig 1. Three allometric equations of cardiovascular system represented (A) in current coordinate (Cartesian
system), and (B) as log-log plot ot the same variables, including as a reference b = 1.0 (isometry).

3) finally, the power of an allometric equa-
tion is:

(M*)¥ = Mxw (5)

In consequence, the above mentioned three
algebraic operations can be applied to nu-
merous variables in an iterative manner, so
that the results may be algorithms of great
biological interest. We have used the term
“algorithm”, from the Arab mathematician
Al-Khuwarizmi (around 825 AD), to indicate
that we are dealing with “a rule of pro-
cedures for solving a mathematical problem
in a finite number of steps that generally
involves the repetition of an operation”.

SCALING

All problems which are related with size (L)
or mass (M) of a living being are of obvious
importance, not only with regard to the
morphology or the physiology of each or-

ganism, but also for its ethological and
ecological implications.

One of the aims of comparative phys-
iology is to establish quantitative differences
between organisms of different size and. for
this purpose, it is customary to define one
organism as the prototype (p) and the other
as the model (m), where prototype means a
large or a small scale organism to which a
model organism is geometrically, chemi-
cally or physically related. For the dimen-
sional analysis, the MLT-system is pre-
ferentially utilized, where M = mass, L =
length, and T = time. Any biological func-
tion (Y) can be defined as the product of
three power functions of these variables (M,
L, T), so that:

Y = MLATY (6)
as specified in Table I, where the corre-

sponding exponents (o, B, y) are indicated for
each variable.
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Table I

Dimensional analysis of thirteen variables of biological interest

Item Variable Definition Dimensions
M L T
o B Y
1 Mass Unit of matter 1 0 0
2 Length Unit of space 0 1 0
3 Time (period) Duration of one cycle 0 0 I
4 Area Length squared 0 2 0
5 Volume Cube of a length 0 3 0
6 Flow Volume per unit time 0 3 -1
7 Frequency The reciprocal of one period 0 0 -1
8 Energy: work Force times distance 1 2 -2
9 Power Work per unit time 1 2 -3
10 Pressure Force per unit area 1 -1 -2
11 Resistance Pressure gradient per unit flow 1 -4 -1
12 Concentration Mass per unit volume 1 -3 0
13 Compliance Change of volume per change of pressure -1 4 2
Table 11
Comparison of the different theories of similarity
Item Similarity Yates’s coefficients References
p q r
1 Mechanical 1 033  0.17 Galileo, 1638 (see Levi-Civita & Amaldi, 1950)
2 Biological 1 033 033 Lambert & Teissier, 1927
3 Elastic 1 0.25 025 McMahon, 1973
4 Empirical regression coefficients 096 035 030 Giinther et al, 1992

DIFFERENT THEORIES OF BIOLOGICAL
SIMILARITY

The theories of biological similarity
(Lambert & Teissier, 1927; McMahon,
1973), which are based on the MLT-system
of physics, can be utilized to predict the al-
lometric exponent (b) of Huxley’s allometric
equation (egn 1) and, in consequence, these
predictions can be “falsified” in the sense of
Popper (1980) by comparing the calculated
or theoretical reduced exponent (bg) with the
corresponding empirical values (bg), which
are obtained by means of the linear regres-
sion analysis of the experimental data (for
more details see Giinther, 1975 a, b). It is
necessary to insist that from the dimensional
analysis (Levi-Civita & Amaldi, 1950), we
can obtain only the numerical values of the
exponents (¢, B, y) of the corresponding fun-
damental units (MLT). The already known
theories of biological similarities (Table II)
differ only with regard to the coefficients for
each of these exponents. The numerical

values of the three exponents are unknown
and, therefore, Yates (1979) proposed the
following algebraic equation to obtain the
coefficients (p, q, r) for the reduced al-
lometric exponent (bg):

bg = po.+qB + 1y (N

The statistical solution for equation 7 was
obtained by means of multiple regression
analysis (Giinther et al, 1992) of 203
empirical allometric exponents which
appeared in literature (Calder, 1984; Peters,
1983). The simplified equation (of statistical
origin) is the following one:

bg =0.960 + 0.358 + 0.30y (8)

A DIMENSIONAL NETWORK

From the MLT-system of physics it is
possible to deduce the corresponding dimen-
sional formulae for numerous functions, as
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Fig 2. Functional relationships among biological variables defined in accordance with the MLT-system of physics. For each
variable, the corresponding name and its physical dimension are indicated.

shown in Figure 2. As it has been said, from
each dimensional formula, the corresponding
allometric “reduced” exponent (bg) can be
calculated in accordance with equation 8.

These theoretically predicted values (bg)
can be compared with the empirical al-
lometric exponents (bg), which normally are
obtained from the regression analysis of the
experimental data. The correlation between
bg and bg for 12 variables of biological in-
terest is shown in Figure 3.

MORPHOMETRY AND PHYSIOMETRY OF THE
MAMMALIAN CARDIOVASCULAR SYSTEM

The applicability of Huxley’s allometric
equation is illustrated in Figure 4, where 17
different cardiovascular variables are charac-
terized by means of the corresponding re-
duced exponent (bg), as calculated after
equation 8. The same procedure can be extra-
polated to any other physiological system,
with the specific aim to establish intra- or
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Fig 3. Regression analysis of the theoretical allometric

reduced exponent (bg) of 12 variables of biological interest
and the corresponding experimental values (bg).

interspecies quantitative comparisons for
a given variable (see Table III). For instance,
and following Laplace’s law, we obtain for
wall tensions (T = P ¢ R) in cylindrical
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Fig 4. Seventeen allometric reduced cxponents (bg, within
parentheses) of morphological and physiological variables of
the cardiovascular system of mammals.

structures that the product of pressure (bp =
0.01) and radius (bg = 0.35) yields bg = 0.36,
as shown in Figure 4.

On the other hand, for the total peripheral
resistance (TPR), we have TPR = (SAP)Y/
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(Qp), being Q, the minute-volume of blood
ejected by the left ventricle. In this case the
final result will be:

TPR = (SAP)/(Qy) = MOY/MOT5 = M074  (9)

Furthermore, the functional relationship
among many variables can be defined in a
guantitative manner by means of a series of
operations with several allometric reduced
exponents (bg). To illustrate this procedure,
we summarize in Figure 5 all cardiovascular
functions which finally yield the systemic
arterial pressure (SAP).

ALLOMETRY OF THE MAMMALIAN
RESPIRATORY SYSTEM

In Table IV, we can find the allometric pa-
rameters (a and b) for 14 variables concern-
ing the respiratory apparatus of Eutherian
mammals under resting conditions. For
instance, Schmidt-Nielsen (1984, p 102)
established five ratios between pairs of
respiratory variables, which in each case
yielded dimensionless (M? and invariant
numbers (Table V). These ratios indicate that
for all mammals, irrespective of their sizes,
five constant ratios could be established.

Table ITI

Allometric characteristics of the mammalian cardiovascular system

Item Variable Unit Parameter a Exponent b References
| Volume of the heart ml 5.72 0.98 Peters, 1983, p 257
2 Stroke volume ml 0.74 1.03 Peters, 1983, p 257
3 Blood volume ml 76 1.00 Peters, 1983, p 257
4 Pulse frequency s°! 4,03 -0.25 Peters, 1983, p 257
5 Cardiac output ml-s 34 0.74 Peters, 1983, p 258
6 Aottic length m 0.164 0.32 Peters, 1983, p 259
7 Aortic cross-section m? 1.8 x 107 0.67 Peters, 1983, p 259
8 Aortic blood velocity m-s?! 0.298 0.07 Peters, 1983, p 259
9 Systemic arterial pressure Pascal (Pa) 1.5x 10¢ 0.032 Peters, 1983, p 260
10 Total peripheral resistance Pa‘s- m? 0.255 -0.68 Peters, 1983, p 260
I Cardiac work Joule 8.91x 107 1.06 Peters, 1983, p 260
12 Cardiac power Watt 0.038 0.77 Peters, 1983, p 260
13 Inferior vena cava length cm 13.3 0.33 Calder, 1984, p 110
14 Mass of the heart g 5.88 0.98 Calder, 1984, p 112
15 Thickness of ventricular wall mm 2.50 0.46 Calder, 1984, p 115
16 Aortic diameter cm 0.34 0.36 Calder, 1984, p 110
17 Inferior vena cava diameter cm 0.48 041 Calder, 1984, p 110
18 Left ventricular mass g 1.65 I.11 Peters, 1983, p 267
19 End-systolic volume (left ventricle) ml 0.59 0.99 Peters, 1983, p 257
20 End-diastolic volume (left ventricle) ml 1.76 1.02 Peters, 1983, p 257
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Fig. 5. Allometric sequence of circulatory variables, which finally lead to mean systemic arterial pressure (SAP).

Table IV

Allometric characteristics of the mammalian respiratory system

Item Variable Units Parameter a Exponent b References
1 Tidal volume ml 7.69 1.04 Peters, 1983, p 255
2 Vital capacity ml 56.7 1.03 Peters, 1983, p 254
3 Air flow ml * min-! 6.32 0.80 Peters, 1983, p 255
4 Total compliance ml « Pa’! 1.59 x 10 1.04 Peters, 1983, p 256
5 Breathing power Watt 1.57 x 107 0.78 Peters, 1983, p 256
6 Frequency of respiration s 0.891 -0.26 Peters, 1983, p 255
7 Oxygen consumption rate ml * min! 11.6 0.76 Calder, 1984, p 92
8 Lung volume ml 452 1.05 Peters, 1983, p 254
9 Tracheal volume mi 0.920 1.15 Peters, 1983, p 254
10 Dead space volume mi 2.76 0.96 Peters, 1983, p 254
11 Lung capillary area m? 273 0.952 Peters, 1983, p 256
12 Lung compliance ml ¢ Pa’! 21.4x 107 1.08 Peters, 1983, p 256
13 Total airway resistance Pa (m? e s)! 2.36 x 10° -0.70 Peters, 1983, p 256

AN ALLOMETRIC CASCADE

Instead of multiplying several allometric
equations, as mentioned before, we will try
now the opposite operation, namely to cal-
culate the ratios (division) between several
functions of the kidneys in Eutherian mam-
mals (Calder, 1984). The first question might
be: How much blood flows through both

kidneys in comparison with the cardiac
output? The next problem could be: Which
is the amount of the glomerular filtration
rate as a fraction of the total renal blood
flow? Finally: How much of the glomerular
filtrate is reabsorbed by all tubules, and how
much fluid appears finally as urine? The
answers to these questions are summarized in
Table VI.
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Table V

Allometric ratios of the respiratory system of mammals.
(After Schmidt-Nielsen, 1984, pp 102-103)

Item Ratio Unit Allometric equation

Allometric ratio  Comments

1 V/VC ml/ml 7.69 MM /56,7 M10

(8%

[eAYe (iml/em H,0)/ml 1.56 M9 7567 M0

3 v./C ml/(ml/cm H,0) 7.69 M4 1 56 MLO4

4 W/VO, (g-em/min}(ml O,/min) 962 MO8/ 1.6 MO7

5 VO,/Vy (] O,/min)/(ml/min)  11.6 MO70 /379 MO#0

0.136 M0 This ratio is mass-independent and dimen-
sionless. The tidal volume (V1) is equivalent te
177 of the vital capacity (V)

When the lung of vertebrates is submitted to a
pressure increase of 1 cm H,O, its volume
expands in 0.028 ml of air for each ml of its
volume

The pressure required to increase the lung
volume in one tidal volume (VT) is the same in
all mammals, namely 4.93 ¢cm H,O

The power (Watt) of the respiratory mauscles is
equal to 0.04 % of the metabolic power. also in
Watt *

The oxygen consumption per minute (VQO,)
represents only 3 % of the pulmonary ventila-
tion (VE)

0.028 MO0

4.93 MO0

4,05x 104 M002

0.03] M-004

Vitidal air (ml); VC: vital capacity (ml); C: compliance (DV/Dp): W: respiratory power (W = g-cm/min); VO,: metabolic power.
expressed as O, consumption (ml 0,/rain); Vi@ volume of expired air (ml) per minute.
~ The energy (g-cm/min) is recalculated to Joules per second (Watts), and 1 ml 0, when metabolized corresponds to 20.1 Joules.

Table VI

Allometric cascade of the renal system and its circulatory support.
(Modified from Calder, 1984, p 133)

Item Function

Allometric equation

Ratios and Percentages

Cardiac output {(CO)

Renal blood flow (RBF)
Glomerular filtration (GFR)
Urine production (UP)

R e B S

187 MO#!

431 M()_77
5.36 M 72
0.042 MO75

RBF/CO 43.1 MY777 187 M4 0.230 M09 = 23q

GFR / RBF 5.36 M"72743.1 M07 0.124 M5 = 12.8%

UP / GFR 0.042 MO75 1 5.36 M2 0.0078 M9 = 0.8%
DISCUSSION is entirely uncorrelated, but that most are

The integrative nature of different organs or
functions can be analyzed in a quantitative
manner by means of the corresponding al-
lometric equations, which are generally ex-
pressed as functions of body mass (M), due
to the fact that M is universally accepted as a
convenient reference system in the biological
sciences. Adolph (1949) has summarized this
holistic approach in the following manner:
“Many physiological properties go hand in
hand with one another; their determination is
reciprocal and not unique. It seems likely
that an organism is an integrated system by
virtue of the fact that none of its properties

demonstrably interlinked; and not just by
simple chains, but by a great number of
criss-crossed linkages”.

Despite the fact that the great majority of
morphological, physiological and ecological
variables are correlated with body mass (M),
Schmidt-Nielsen (1984, p 141) suggested
that there exists also a certain number of
non-scalable physiological variables, ‘.e.,
that they are mass-independent numbers
(MIN), as for instance: i- viscosity of the
blood; ii- plasma protein concentration; iii-
hematocrit; iv- blood pressure; v- red cell
size; vi- capillary diameter.
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To obtain mass independent numbers
(MIN) and in some instances even adimen-
sional conditions (MPLOT?), Stahl’s (1962,
1963, 1965, 1967) allometric cancellation
method can be recommended, since this
procedure consists in the multiplication or
division of the corresponding allometric
equations, with the specific purpose to obtain
finally Stahl’s “residual mass exponent”
(RME), which should be equal or very close
to zero (M. For instance, interspecies or
intraspecies comparisons can easily be
obtained by employing Stahl’s cancellation
method. A specific example (Calder, 1984, p
144) may be the comparison of the heart rate
an:i the respiratory rate in mammals of
different size. The corresponding allometric
equations are:

1) for the heart rate:

F, =241 « M0 (10)
2) for the respiratory frequency:
F,=53.5 ¢ M0% an

The ratio between equations 10 and 11 is:
Fi/F, =241 « M025 /535« M 025 =45 « MO0 (]12)

which means that, for all mammals, we have
4.5 heart beats for each respiratory cycle.

Another example is the metabolic scope.
Thus, the relationship between the maximal
oxygen consumption (VO, max) and the
standard oxygen consumption (VO, st) in 14
species of wild mammals (Schmidt-Nielsen,
1984, p 155) is:

VO, max/VO; st = 1.94 e M07 0,188 « M075 = 103« MO™  (13)

In conclusion, the maximal oxygen con-
sumption is 10 times greater than the oxygen
consumption at rest in mammals.

The above are only a few examples of the
applicability of the allometric equations to
obtain ratios of intraspecific or interspecific
validity, based either on Stahl’s (1962, 1963,
1965, 1967) cancellation method, or else, by
means of the mass-independent numbers
(MIN), which yields also Stahl’s residual
mass exponents (RME) close to zero.
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APPENDIX

The aim of this Appendix is to represent,
for the first time to our knowledge, the two
parameters (a, b) of the allometric equations
(see eqn 1) as a single point in the Cartesian
plane. Usually, the numerical values of both
parameters (a, b) are given in the form of
Tables (as examples see Tables A-I and
A-II). In the present case, due to the wide
range of the numerical values of parameter a
it is convenient to use a semilogarithmic plot.
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Table A-1

Allometric functional cascade of the renal system in mammals (Data from Calder, 1984)

Item " Function (ml/min) Parameter (a) log (a) Exponent b £ SEM
1 Cardiac output 187 22718 0.81 £0.01
2 Renal blood flow 43.1 1.6344 0.77 £ 0.08
3 Glomerular filtration 5.36 0.7291 0.721£0.04
4 Urine production 0.042 - 1.3767 0.75+£0.10
Table A-11
Allometric equations related to time functions (Data from Calder, 1984)
Itemn Function (ml/min) Parameter (a) log (a) Exponent b
1 Cardiac cycle 0.25 - 0.6021 0.25
2 Respiratory cycle 1.12 0.0492 0.26
3 Gut beat duration 2.85 0.4548 0.31
4 Circulation of blood volume 21 1.322 0.21
S Twitch contraction cycle of soleus muscle 0.064 - 1.1938 0.39
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Fig A-1. Two-dimensional semilogarithmic diagram of
allometric equations related to circulatory and renal volume
flows (ml * min'!) in mammals. Ordinate, allometric
exponent (b). Abscissa, logarithm of parameter (a). CO,
cardiac output; RBF, renal blood flow; GF, glomerular
filtration: UP, urine production. [Data from Calder (1984), p
133].

As shown in Figure A-1, the exponents (b)
of the renal flow cascade are almost the
same, while in the abscissa (log a) the
reduction of flows (ml/min) is dramatic, if
one compares cardiac output (187 ml/min)
with urine production (0.042 ml/min), ie.,
4500 times less.

Another example is illustrated in Figure
A-2, where different periodic phenomena are
represented as points in the Cartesian plane.
Again, the semilogarithmic plot allows to
compare two time functions of similar al-
lometric exponent (b). For instance, the cir-

log parameter (o)

Fig A-2. Two dimensional diagram of allometric equations
related to several time functions (s) of mammals. Ordinate,
allometric exponent (b). Abscissa: logarithm of parameter (a).
CT, circulation time of blood volume; GBD, gut beat duration:
RC, respiratory cycle; CC, cardiac cycle; T, twitch contraction
cycle of soleus muscle. The two reference lines correspond to
the mean values (b = 0.33 and b = 0.25) of periodic phenomena
in mammals. [Data from Calder (1984), pp 142-143].

culation time (CT) with the cardiac cycle
(CC), which yields a ratio of 84 times, or the
gut beat duration (GBD) of the intestinal
smooth muscles with the twitch of striated
soleus muscle (T), being the ratio 44.5 times.

It is worth mentioning, that the con-
clusions we obtained from the two ratios are
valid for all mammals, irrespective of their
sizes.

In sum, the semilogarithmic plot of the
characteristic allometric parameters in a Car-
tesian plane permits an easy visualization of
functional relationships.






